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Abstract. Methods of computing periodic Green's functions of Stokes flow representing the flow due to triply-, 
doubly-, and singly-periodic arrays of three-dimensional or two-dimensional point forces are reviewed, developed, 
and discussed with emphasis on efficient numerical computation. The standard representation in terms of Fourier 
series requires a prohibitive computational effort for use with singularity and boundary-integral-equation methods; 
alternative representations based on variations of Ewald's summation method involving various types of splitting 
between physical and Fourier space with partial sums that decay in a Gaussian or exponential manner, allow for 
efficient numerical computation. The physical changes undergone by the flow in deriving singly- and doubly- 
periodic Green's functions from their triply-periodic counterparts are considered. 

1. Introduction 

The flow due to a periodic array of point forces and associated Green's functions of Stokes 
flow are fundamental building blocks that allow us to analyze and synthesize a variety of 
spatially-periodic flows using singularity and boundary-integral-equation methods [1]. The 
origin of these methods may be traced back to the reciprocal theorem and the boundary- 
integral representation presented in a seminal paper by Lorentz [2]. Examples of applications 
include the flow of periodic suspensions of solid particles and liquid drops in infinite space 
and inside tubes [3-5], the flow past periodic arrangements of obstacles representing ordered 
or random porous media, and the flow past model filters, membranes, and screens [6,7]. 

Despite its conceptual simplicity, the flow due to a periodic array of point forces has resisted 
efficient computation for quite some time. The central mathematical difficulty lies in the fact 
that the flow due to a single point force in three dimensions decays like 1/r, and this makes 
the direct summation over a periodic array divergent. Similar but more severe difficulties 
are encountered in two dimensions. A resolution emerges by abandoning the method of 
direct summation and solving the periodically-forced equations of Stokes flow demanding 
appropriate periodic conditions for the velocity and pressure. The first computation of this 
type was done by Hasimoto [8], who derived the flow due to a triply-periodic array of three- 
dimensional point forces and the flow due to a doubly-periodic array of two-dimensional point 
forces in the form of Fourier series. His solution and its extensions to doubly-periodic and 
singly-periodic arrays will be discussed in Section 2 of the present paper. 

Unfortunately, the Fourier-series representation converges slowly, requiring a prohibitive 
amount of effort for use in large scale numerical simulation [3-5]. Realizing this difficulty, 
Hasimoto [8] devised a fast summation method based on Ewald's original formulation. The 
idea is to replace the Fourier series with two complementary, rapidly converging sums, one 
over the physical lattice and the second over the wave-number reciprocal lattice. Ishii [9], and 
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Sangani and Behl [7], extended the Hasimoto-Ewald summation method to planar arrays of 
three-dimensional point forces. 

A different summation method that circumvents a great deal of analytical work was 
proposed by Beenakker [10] for triply-periodic arrays. His method is based on a direct 
decomposition of the stokeslet, before it is summed over the periodic lattice. The final result 
is a sum in real space and a sum in reciprocal space which are similar but not identical to 
those derived by Hasimoto [8]. In Section 3 we discuss Beenakker's method and its extensions 
to doubly-periodic arrays of three-dimensional point forces. The latter produces complicated 
algebraic expressions involving the error function, whose computation incurs a substantial 
cost. To circumvent this difficulty, in Section 4 we develop an alternative fast summation 
method that is based on a different decomposition of the stokeslet. The method yields partials 
sums that converge at a rate that is slower than that of Beenakker's decomposition; its 
advantage is that it involves relatively simple algebraic expressions that expedite the numerical 
computation. 

In Section 5 we discuss the analogous computation of the flow due to arrays of two- 
dimensional point forces. Previous authors have developed methods based on Ewald's original 
formulation which result in expressions involving the exponential integral [6,8,11 ]. We devel- 
op an alternative representation that arises by integrating the Green's function corresponding 
to a three-dimensional array of three-dimensional point forces in the direction of one base 
vector to obtain a continuous distribution in the direction of integration, and we discuss its 
numerical implementation. 

In recent years, a considerably body of work has been devoted towards developing efficient 
summation methods pertinent to general types of scalar potentials encountered in molecular 
dynamics (see, for example [12]). The present paper contributes a parallel development in the 
area of low-Reynolds-number fluid mechanics. 

2. Arrays of three-dimensional point forces: Fourier series solution 

We begin by deriving the Fourier-series representation of the Green's function corresponding 
to a periodic array of three-dimensional point forces. Our main goal in this section is to 
establish a point of reference for the development of fast summation methods which will be 
considered in the subsequent two sections. 

2.1. TRIPLY-PERIODIC ARRAYS 

Consider the flow due to a three-dimensional periodic array of point forces with identical 
strengths g placed at the vertices of a three-dimensional lattice in infinite space, where one 
of the point forces is located at the point x0. The instantaneous structure of the !attice can 
be described in terms of the three base vectors, al,  a2, a3, which are oriented according 
to the right-handed rule, so that the nth point force is located at the point x0 + Xn, where 
Xn = i lal  + i2a2 + i3a3 and il,  i2, i3 are three integers, as depicted in Fig. 1. 

The associated velocity u and pressure p satisfy the continuity equation V .  u = 0 and the 
periodically-forced three-dimensional Stokes equation 

-Vp(x) -t-#V2u(x) + g Y~ 63(xn) = O, (2.1) 
n 

where # is the viscosity of the fluid, xn = x - x0 - Xn, and 63 is the three-dimensional delta 
function. 
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Fig. 1. A three-dimensional periodic array of point forces with identical strengths placed at the vertices of a 
three-dimensional lattice in infinite space. One of the point forces is located at the point x0. 

Following standard practice, we introduce the three-dimensional periodic Green's function 
G 393P  and corresponding pressure v e c t o r  p3D3P defined in terms of the equations uj = 
1 / ( 87r #)G~ D3 P 9m and p = 1 / (87r )p303 t" 9m. Substituting these definitions into (2.1) and the 
continuity equation and discarding the arbitrary constant g we obtain 

c~(73D3P OP 3D3P V2(73D3P ---- jra 
Ox-----j-- + -- --am + 87trim ~n 63(in) = 0, Oxj = 0. (2.2) 

Next, following Hasimoto [8], we exploit the periodicity of the flow and expand G 3D3P and 
pressure gradient ~7p 393P  in complex Fourier series, writing 

Op 3D3P 
G3.D3P ^ 3D3P • 3m = y~  Gjm,~ exp(-zk,~. :io), 

), Oxj 
^3D3P = ~ P j m ~  exp(-~k:~. ~0), (2.3) 

where k~ = jl  bl + j2b2 + j3b3 are the reciprocal lattice points residing in the wave number 
space, j l ,  j2, J3 are three integers, and bl, b2, b3 are the reciprocal base vectors defined as 

27r 27r 27r 
bl = - - a 2  xa3,  b 2 = - - a 3  x a l ,  b3 = - - a l  xa2  (2.4) 

T 7" T 

7" = (al × a2) • a3 is the volume of a periodic cell in physical space. Note that the physical 
and reciprocal lattice vectors satisfy the equation Xn • ka = 27rm where m is an integer. 
Furthermore, we use Parseval's identity to write 

1 ~--~exp(-ik),. xo). (2.5) 
n ,~ 

Substitution of (2.3) and (2.5) in (2.2) and grouping similar Fourier coefficients yields the 
algebraic system of equations 

,,~3D3P ~. 2,~,3D3P 871" -ejm;~ -r~), ~jm)~ +--~Sjm = 0 ,  
T 

k ,,~3D3P 
,kjt..rjm,~ = 0 (2.6) 
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the solution of which is 

~3D3P ,~3D3P 87r 
jmO =0,  ejmO = ~ j r n  T 

for [k0[ = 0, and 

~3D3P= 871" 1 ( kj,~kmA) 
jm~ r Ik,xl 2 6jm ik,xl2 , 

(2.7a) 

~j,~:~ _ 87r kj~km~ 
ik l 2 (2.7b) 

for [kA] # 0. The zeroth-order coefficients shown in (2.7a) are responsible for the onset of a 
pressure gradient in the direction of the point forces. Substituting (2.7a,b) in the first equation 
of (2.3) yields the Green's function in the form of a Fourier series [8] 

G3D3P 87r ~ 1 ( kj~km~ ) exp(_ik~ . Y~o ) 
jm = 7 ik,xl2 6jm ik,xl2 

Ik x I#0 

~ ( 0 ) s3D3P(k;~, ~0)" (2.8) 
= 0X Xr  

Ik x I#o 

For brevity of notation we have introduce the generating function 

s3D3P(k, x) = e x p ( - i k  • x) 
[k[4 (2.9) 

The associated pressure gradient is given by 

Op 3D3P 87r ~. 87r kj)~ kmA 
Oxj = T am + T ~ [kal 2 exp(- ika . 'x0)  

Ikx I#0 
8 r  87r 0 , -= - -6 jm ~ ~72s3D3P (k,~,/20). (2.10) 

Ox~xm T T 
Ika I#0 

One interesting consequence of the spatial periodicity of the generating function S 303P 
is that the flow rate across a plane that is perpendicular to one of the base lattice vectors in 
physical space vanishes. This becomes evident by observing that the component of the velocity 
normal to such a plane is proportional to the two-dimensional Laplacian of S 303P, written 
with respect to the two coordinates that vary in that plane, using the divergence theorem to 
convert the integral of the normal component of the velocity over a periodic area to a line 
integral of the normal derivative of S 3D3P around its boundary, and then noting that the line 
integral vanishes because of the periodicity of S 303P. 

2.2. DOUBLY-PERIODIC ARRAYS 

To obtain a doubly-periodic array of three-dimensional point forces located in the plane of 
the base vectors al and a2, we set a3 perpendicular to the plane of al and a2, write r = AL 
where A = lal x a21 is the area of one planar cell and L = [a3[, and find 

27r 27r 27r 
bl = -~-a2 x e3, b2 = --~-e3 x al,  b3 = --~-e3, (2.11) 
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where e3 is the unit vector in the direction of a3. In the limit, as L tends to infinity, (2.8) yields 
the new Green's function 

~ (  O)s3D2P(1,~,~O), (2.12) ~jrn('7"aD2P ~. -A4rr --SjrnV2 -1- OX'~Xrn 
Ilxl~0 

where 1;~ = j l b l  -t-j2b2 are the reciprocal lattice points lying in the plane of al and a2, and 
j l ,  j2 are two integers. The new generating function S 3D2P is given by 

s3D=P(I,x) = 1 f_~ exp[-- i ( l+r /e3) 'x]  1+3p 
7 oo II +'/7e314 d r /=  1 [11 e x p [ - i l . x  - p], (2.13) 

where p = I11 [e3 • x[ [6,9]. The integrals are evaluated with the help of ref. [13, p. 410]. 
The corresponding pressure gradient is found by replacing the first term on the right-hand 

side of (2.10) with a new term involving the one-dimensional delta function, 51, operating in 
the plane of the array as shown below, and integrating the last term as in (2.13) [10, p. 406], 
yielding 

Op3mD2P 87r5' 5 47r 0 V2s3D2P(I;~, :~0). 
oxj  - j . ,   (3co3)--7 oxjoz---  

I Ix I ¢0 

(2.14) 

It is important to note that, in deriving the doubly-periodic array from the triply-periodic 
array, we have abandoned the summation over the one-dimensional array corresponding to 
the null wave number Ilxl = 0 as shown in (2.12) and (2.14); if we did not, the associated 
integral in (2.13) would have exhibited a singular behaviour. As a result of this modification, 
both the velocity and pressure gradient decay at an exponential rate far from the array. 

There is a penalty that we pay by requiring that the velocity and pressure vanish far from 
the array: when the point forces are oriented normal to the array, the pressure undergoes a 
discontinuity of magnitude [1/(#A)]g across the plane of the array; when the point forces are 
oriented parallel to the array, the shear stress undergoes a corresponding discontinuity of same 
magnitude. This behaviour becomes evident by noting that the Laplacian of the generating 
function given in (2.13) represents the steady temperature field due to the combined action of 
a doubly-periodic array of point sources of heat, and a continuous distribution of point sinks 
of heat distributed in the plane of the array, so that the net rate of transport of heat across a 
period of the array is equal to zero [9]. 

To demonstrate the discontinuity in shear stress when the point forces are parallel to the 
array, we differentiate (2.12) and use the identity 

1 
52(~n) = ~ ~ exp(-il;~, io), (2.15) 

n A 

where 52 is the two-dimensional delta function operating in the plane of the array, to obtain 

4_ ( Oall ~ = q_ ( OG22~ 47r 
\ Ox---7"/:~%=o~: \ Ox--'-7/:~o3=0+ -- A- 4rr ~ n  62(~,~). 

(2.16) 

The second term on the right-hand side of (2.16) represents the effect of the point forces, 
whereas the first term demonstrates the discontinuous behaviour. 
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In order to obtain a Green's function with a continuous stress field we work as follows. 
When the point forces are directed normal to their plane, we enhance the pressure field with a 
step function that suffers an appropriate jump. When the point forces are directed parallel to 
the array, we introduce a simple shear flow, with an objective to annihilate the discontinuity 
in the slope of the velocity across the plane of the point forces. This is effected by enhancing 
the diagonal components of the Green's function with a symmetric shear flow, thus obtaining 
the regularized form 

G3D2P-R (-j3D2P 3m = --jm 6jml:r03 I, (2.17) 

where j,  m = l, 2. The velocity field associated with (2.17) and its derivatives are continuous 
and differentiable throughout the whole space, except at the location of the point forces. 

2.3. SINGLY-PERIODIC ARRAY 

To obtain a singly-periodic array of three-dimensional point forces arranged along the base 
vector al,  we begin from the triply-periodic array depicted in Fig. 1, set al, a2, and a3 
perpendicular to one another, and write T = aL 2 where a = lal[ is the separation of the point 
forces and L = [a21 -- la31. We thus find 

27r 27r 27r 
bl = --el,a b2 = -~--e2, b3 = -~-e3, (2.18) 

where el and e2 are the unit vectors in the directions of al and a2. Letting L tend to infinity 
reduces (2.8) to 

G3DIP jm ~ (  CO)s3DlV(mx,flo), (2.19) = 4~ra --6jmV 2 "b OXjOX-~ 

Ira;~ I¢0 

where m~ = )~bl are the reciprocal lattice points and A is an integer. The corresponding 
generating function is given by 

1 . / ~  expt-i(m + ~e2 + r/e3), x] 
s3D1P(m'x) = ~ __oo __oo [m + ~e2 +~e314 d~ d~. (2.20) 

Expressing the variables of integration in plane polar coordinates (r,/9) and performing the 
integration with respect to the polar angle 0 yields 

fo °° Jo(ar) s3D1P(m, x) = 27r e x p ( - i m  • x) ([m[ 2 + r2)2 r dr 

_ K (crlml) e x p ( - i m ,  x), (2.21) 
7r Iml 

where a is the distance of the point x from the line of the point forces [13, pp. 482, 686]. 
Using the asymptotic expansion of the modified Bessel function K1 for large values of its 

argument  lml [14, p. 378] we obtain the far-field behaviour 

SaD1P ~ ( o ~ 1/2 1 e x p ( - i m ,  x0 - crlml), (2.22) 
\~-~ ] 1m[3/2 
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which demonstrates that the flow far from the array decays at an exponential rate. 
To assess the behaviour of the flow in the vicinity of the array, which is located at a = 0, we 

use the asymptotic expansion K1 (x) = 1/x + (x/2) ln(x/2) + . . .  [14, p. 375] and obtain 

1 (  1 0 " 2  ) 
s3DIP(m'x)~--Tr ~--~ +5-1n(½ lml) e x p ( - i m . x ) ,  (2.23) 

which reveals a logarithmic singularity at the axis. Substituting (2.23) in (2.19), switching the 
differential operators with the sum, and using the identity 

1 ~ exp(-im~ • i0) (2.24) ~ 1 ( ~ n )  = 
n )~ 

gives the asymptotic behaviour 

G3DIP ( O ) (_a21na)" (2.25) 
jm  ~ 2 -~jmV2 + OXj"'OXrn 

The generating function a 2 (ln cr - 1) produces (a) Stokes flow due to a two-dimensional point 
force pointing normal to the array ([1], p. 60), and (b) unidirectional flow with vanishing 
pressure gradient when the point forces are parallel to the array. To obtain a regularized 
Green's function with a non-singular behaviour at the axis, we set 

G3D1P-R ~3DIP (--'jmV2 O ) [a2(lna-1)]. (2.26) 
jm  = --jrn -'1" 2 + Oxf-~x m 

The singular behaviour of the last term annihilates that of the first term on the right-hand 
side yielding a non-singular behaviour. At infinity, the corresponding velocity field grows at a 
logarithmic rate. The associated pressure gradient may be found readily by substituting (2.26) 
in the Stokes equation enhanced with a singular forcing term that reflects the presence of the 
one-dimensional array. 

3. Arrays of three-dimensional point forces: Beenakker's method 

The slow convergence of the Fourier sums on the right-hand sides of (2.8) and (2.12) motivates 
the developments of alternative computational methods. Hasimoto [8] developed a method 
of computing the generating function S 3D3P and its Laplacian based on Ewald's original 
formulation. Ishii [9], and Sangani and Behl [7], discussed the analogous computation of 
S 392P. We find, however, that it is more straightforward to proceed in an alternative manner 
following Beenakker's [8] work for the Rotne-Prager tensor which, in turn, is motivated by 
an analogous formulation by Nijboer and De Wette [15] for the computation of generalized 
potentials in electrostatics. 

3.1. TRIPLY-PERIODIC ARRAYS 

We begin by introducing the free-space Green's function or stokeslet representing the flow 
due to a three-dimensional point force located at the point xo in infinite space, and express 
it in the form S(x - xo) = (IV 2 - VV)r0 where ro = Ix - xol [1]. Next, we express the 
stokeslet in the form 

S ( x  - xo)  = O ( x  - x0)  + , I , (x  - xo ) ,  ( 3 . 1 )  
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where 

- [ r erf(~,) ] '  (3.2) 

r = [xl, and [ is an arbitrary positive constant with dimensions of inverse length. The reason 
for this decomposition will be discussed shortly in this section. After some straightforward 
algebra we obtain 

xxD(~ r) O(x) = I c ( [ r )  + (3.3) 
r ~T , 

where 

c(z) = effc(x) + ~--~F~ (2x 2 -  3)xexp(-x2),  

(3.4) 

D(x) = erfc(x) + ~ ( 1  - 2x2)x exp(-x2). 

Now, we consider summing the right-hand side of (3.1) over all point forces. Noting that 
O decays in a Gaussian manner as the observation point x moves far from the location of 
the point force x0, suggests that it may be summed efficiently over a truncated range of point 
forces in the periodic lattice. The second component, t9, does not decay fast enough to be 
summed over all point forces. To circumvent this difficulty, we introduce Poisson's summation 
formula, which is a special case of Parseval's identity stating that for any function F defined 
over the nodes of a three-dimensional lattice, 

F ( X . )  = _1 (3.5) 
T 

n = 0  )~=0 

where/~(k) is the three-dimensional Fourier transform of F with respect to X, defined as 

.f(k) = fR3 exp(ik • X)F(X) d3X. (3.6) 

Note that (2.5) arises from (3.5) by identifying F with the three-dimensional delta function. 
To apply (3.5) for ~ ,  we require its Fourier transform which, according to (3.6), is given 

by 

~(k,  to) = fR3 exp(ik. X)~(io - X)d3X. (3.7) 

Introducing the explicit form of • from (3.2) we obtain 

~ ( k ' x 0 )  -" .I,3 exp(ik. X)(IV 2 - VV)[r erf(~r)] d3X 

(-I lkl  2 + kk) fR3 exp(ik • X)r erf(~r) d3X, (3.8) 

where r = Ix - Xo - X]. To evaluate the integral on the right-hand side of (3.8), call it Q, we 
work in spherical polar coordinates, writing 

Q = exp(ik • :lo) .IR3 exp[ik • (X - ~o)]r erf(~r) d3X 

= 27rexp(ik. x0) exp(ilklrcos0 ) erf(~r)r 3 sinOdOdr. (3.9) 
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Performing the integration with respect to the polar angle 0 we obtain 

Q f0°° = exp(ik- ~o)~-~ sin(Iklr) erf(~r)r 2 dr 

^ 47r 02 oo 
= - e x p ( i k . x o ) ~ 0 l k l  2 fo sin(lklr) eff((r)dr. (3.10) 

To compute the last integral in (3.10) we write 

/0 /0 /0 °°sin(lklr) erf(~r)dr = s in ( lk l r )d r -  °°sin(lklr) erfc(~r)dr 
1 ( ¼ )  

= - -  exp - co 2 
Ikl (3.11) 

where we have defined w = Ikl/5. The third integral in (3.11) is computed using standard 
tables [13, p. 480]. The second integral is regarded as the Fourier transform of the step 
function, and is thus computed in terms of the Fourier transform of the one-dimensional delta 
function using the fact that the delta function is the derivative of the step function; the result 
is 1/Ikl. Finally, we substitute (3.11) in (3.10) and then into (3.8), obtaining 

87r (5jm kjkm~ (l + lw2 (~jm(X0, k)"~" ~ [k[2 j - -+- ~034) exp (--¼W 2) exp(ik, ft0). (3.12) 

Combining (3.1), (3.5), and (3.12) we obtain the Green's function in the form of two 
exponentially decaying (and thus rapidly convergent) sums, as 

G3D3P[̂  ~ 87r ~-~ 
 xoj = - -  

n 7" 
( o) 

--SjmV2 -}- OZ'j-OXm s3D3P-I(kA'x0) (3.13) 

where 

1 1 s3D3P-l(k,x) = ~4 (-~ + -g-~ + l ) exp (-¼a~2) exp(ik . x) (3.14) 

[1]. The omission of the zero wave-number in the second sum is justified by the introduction 
of a mean pressure gradient associated with a three-dimensional lattice of point forces. 

Decreasing the value of ~ renders the contribution from the sum in reciprocal space 
increasingly smaller compared to that of the first sum in physical space. As ~ tends to infinity, 
~o tends to zero, the first sum makes a vanishing contribution, the generating function tends 
to that shown in (2.9), and (3.13) reduces to Hasimoto's Fourier series shown in (2.8). There 
is an optimal value of ~ that minimizes the computational effort; for the simple cubic lattice 
B eenakker [10] recommends ~ = 7rl/2/T1/3; more generally, the optimal value depends upon 
the expense of computing or approximating the error function. 

It is instructive to contrast the Gaussian decay of (3.14) with the algebraic quadratic 
decay of (2.9). By introducing the decomposition (3.1), we shift the singular behaviour of 
the Green's function near the point forces to the first component O. As a result, the Fourier 
series of the second component • decays an exponential rate, thus expediting the numerical 
computation. 
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3.2. DOUBLY-PERIODIC ARRAYS 

To obtain a planar doubly-periodic array of three-dimensional point forces deployed in the 
plane of the base vectors al and a2, we work as discussed in the text surrounding Eq. (2.11), 
and find that (3.13) reduces to 

= Zn (~jm(Xn) + 7 --~jm~2 + OXj'OX m ( l ;~, iO) 

Ilxl#0 

+-A --~jmV2 + OXjOXm .I Ilxl=0 

G3D2P / ̂  
j m  ~X0) 

(3.15) 

where the first summation is over the planar array, 1~ = j l b l  + j262 describes the two- 
dimensional reciprocal lattice which lies in the plane of the physical lattice, and the generating 
function is given by 

1 oo 1 1 
s3O2P-l(l,x) : - ~  f_oo ( ~  + Z-~ + l ) exp [--¼oJ2 -- i(l+rle3) . x] d~7, (3.16) 

where cv = 11 + r/e3 [/~. It is important to note that excluding the generating function S 3D3P 

given in (2.13) from the summation over the null wave number 1~ on the right-hand side of 
(3.15) is consistent with our earlier action in Section 2. Straightforward rearrangement of 
(3.16) yields 

2 [Io(3,~)+lll(~,~)+I2(3,~)]exp(-¼(2-il.x), (3.17) s3D2P-1 (1, x ) =  

where 6 = ~e3 • x, ~ = Ill/~, and we have defined the integrals 

f0 ~¢ cos(~t) I,~(6,¢) = (if2 +t2)2,~ exp ( - i t  2) dr. (3.18) 

Reference to tables of definite integrals yields 

I0 = ~1/2 exp(_62), 

7rl 
Ii(6, f f ) -  4 f f e x p ( l ( 2 ) [ e - P e f t ( l f f _ 1 6 [ ) + e  p e f t ( l ~ + 1 6 0 _ 2 c o s h ( p ) ] ,  

(3.19a) 

(3.19b) 

1 011 (~, ( ) 
/2(6,() = 2( 0 (  ' (3.19c) 

where p = 161 C = I11 le3 • xl, and the error function satisfies the symmetry condition 
eft(x) = - e f t ( - z )  [13, p. 480; 14, p. 453]. 

In the limit as ~ tends to infinity while Ill and e3 • x are held constant, the integrals/0, I1 
and/2 exhibit the asymptotic behaviour 

7r e - p  7t e - p  
Io(~,~) s 0 ,  I1(6,~) ~ ~--~-,  I2(~,~) ~ ~ ~--3-" (3.20) 

In this case (3.17) reduces to (2.13), yielding the Green's function in terms of a Fourier 
series. 
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Both generating functions (3.17) and (2.13) decay at an exponential rate with respect to 
p. As I11 tends to infinity while ( and e3 • x are constant, however, the factor that multiplies 
the exponential term in (2.13) decays at a power-law rate with respect to I11, whereas that in 
(3.17) decays at a Gaussian rate. This feature reduces the computational cost by a substantial 
amount, especially for small values of p. 

To obtain the Green's function we require the first and second partial derivatives of the 
generating function with respect to (. These are given by long expressions which are available 
by the author at the reader's request. In practice, it is more expedient to compute these 
derivatives by numerical differentiation. 

4. Arrays of three-dimensional point forces: second fast-summation method 

The presence of the error function and the complexity of the generating function for flow due 
to a two-dimensional array of three-dimensional point forces given in (3.17) motivates the 
search of alternative methods in hopes of efficient numerical computation. With this goal in 
mind, we begin afresh with a different kind of splitting between real and reciprocal space. 

4.1. TRIPLY-PERIODIC ARRAYS 

Replacing the error function in (3,2) with an exponentially decaying function we obtain the 
alternative form 

Lr[1 - exp(-¢r)]]  ' 

where r = Ixl and, as before, ( is a positive constant with dimensions of inverse length. After 
some straightforward algebra we find that ® is given by (3.3) with 

C(z) = (1 - 3z + xZ)e -x, D(z) = (1 + x - z2)e -z. (4.2) 

Furthermore, working as in Section 3, we find that the Green's function is given by (3.13), 
where the generating function assumes the new form 

3 6) ~ e x p ( i k  x). (4.3) 

The exponential decay of the modulating functions C and D in (4.2) may be contrasted 
with the Gaussian decay of the corresponding functions of (3.4). Furthermore, the sixth-order 
algebraic decay of the generating function in (4.3) may be contrasted with the Gaussian 
decay of (3.14) but also, with the fourth-order algebraic decay of (2.9). Clearly, the present 
method is an improvement over the Fourier-series method. Computational cost for evaluating 
the error function aside, the method described in Section 3 leads to faster summation. The 
advantages of the present method will become evident when we consider the Green's functions 
for two-dimensional planar arrays. 

4.2. DOUBLY-PERIODIC ARRAYS 

Working as in Section 3, we find that the Green's function for a doubly-periodic array is given 
by (3.15), where the generating function assumes the new form 

1 /_'~ 6w 4 + 3o., 2 + 1 exp[-i(1 4- ~e3)" x] dr/ (4.4) '-q3D2P-2(I'x) = ~ oo w4(a; 2 4- 1) 3 
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with w = II+r/e31/~. The integral in (4.4) may be computed in closed form by means of contour 
integration in the complex plane. For example, when e3 • x < 0, we introduce a semi-circular 
contour in the upper half-plane that joins the real axis to form a closed contour, and note that 
the integrand in (4.4) has a double pole at r /= / I l l ,  and a triple pole at ~ = i(~2 + 1112)1/2. As 
the radius of the semi-circular contour tends to infinity, the corresponding integral vanishes, 
and the integral in (4.4) becomes equal to the sum of the residues multiplied by 27ri. The 
residues were computed using the program Mathematica©, programmed by Chad Coulliette; 
a copy of the script is available on request from the author. The result may be placed in the 
form 

s3D2P-2(l, x) = saD2P(1, x) + Q(6, (______~) exp ( - i l  • x), (4.5) 
2~ 3 

where 

Q(',()= 2-~2 + ' ( 2 - ~ z ) ~ - ~  +62(1+~2) (-6 1~~) (4.6) 
(1 + (2)5/2 exp , 

( = Ill/ , p = Ill ]e3 • x[, and 6 = ~[e3 • x[. An identical expression is obtained when 
e 3 . x > 0 .  

The first term on the right-hand side of (4.5) is the generating function corresponding to the 
Fourier-series solution given in (2.13). In the limit as ~ tends to infinity while Ill and e3. x are 
held constant, the second term on the right-hand side of (4.5) vanishes yielding the Green's 
function in the form of a pure Fourier series. On the other hand, as I11 tends to infinity while 
and e3 ' x are held constant, (4.5) assumes the asymptotic form 

,-q3D2P-2(I, X) ~ 1~c2 p2 exp ( - i l  • x - p). (4.7) 

Both (4.7) and (2.13) decay at an exponential rate with respect to p. The power of Ill that 
multiplies the exponential in (4.7), however, is higher by two units than that of (2.13), and 
this expedites the computations, especially for small values of p. 

The first term on the right-hand side of (4.5) is summed over all lattice points Ix with the 
exception of the null point II;~l = 0, in agreement with our earlier discussion in Section 2. The 
second term is summed over all lattice points, including the null point [la I = 0; the value of 
the second term at the null point is readily found to be [1/(2~3)] (2 + 26 + 62) exp( -6) .  In the 
limit as ~ tends to infinity, the contribution of this term tends to vanish. 

To obtain the Green's function we require the first and second partial derivatives of the 
generating function with respect to 6. These are given by relatively simple but rather long 
expressions which can be obtained from the author on request. In practice, it is more expedient 
to compute these derivatives by numerical differentiation. 

5. Arrays of two-dimensional point forces: Fourier-series solution 

In the final two sections we consider doubly- and singly-periodic arrays of two-dimensional 
point forces following the general discussion of the preceding sections for three-dimensional 
flow. 

5.1. DOUBLY-PERIODIC ARRAYS 

We begin by considering the flow due to a two-dimensional lattice of two-dimensional point 
forces in the zy plane. One of the point forces is located at the point x0 and the rest of them 
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are located at points that are separated by the lattice vectors Xn = i la l  + i2a2 where al, a2 
are two arbitrary base vectors lying in the xy plane, and il, i2 are two integers. The associated 
velocity field and pressure fields satisfy the continuity equation V.  u = 0 and the periodically 
forced two-dimensional version of the Stokes equation (2.1), where (53 is replaced by the 
two-dimensional delta function 52. Following standard convention, we express the solution 
in terms of the periodic Green's function G 2D2P and corresponding pressure vector  p2D2P 

4 G 2D2P 1/(47r)p2D2Pgm, and obtain defined by uj = 1 / (7r#)  jm 9 m a n d p =  

Op2D2P V 2 C  2D2P 47r(sjm E - - -3m - - 0 .  (5.1) 
ox-----j- + - --jm + 52( ,d = o, oxj  

n 

Exploiting the periodicity of the flow, we expand G 2D2P and Vp 2D2P in complex Fourier 
series as 

G2DEP e~ ~2DEP Op2DEP 0¢ ^2DEP • 
3'~ = y ~  exp( - i l~ ,  x0), - -  -- E P j m , ~  exp(-zl;~. :~0), (5.2) '~jm)~ Oxj 

where Ix = j lb l  + j2b2 are the reciprocal lattice points, j l ,  j2 are two integers, bl,  b2 are the 
reciprocal base vectors defined as 

27r 2rr 
bl = -~-a2 x ez, b2 = --~-ez x a l .  (5.3) 

A = lal x a21 is the area of one periodic cell, and ez is the unit vector in the direction of the z 
axis. The physical and reciprocal lattice points satisfy the equation Xn • l;~ = 27rm where m 
is an integer. Furthermore, we introduce identity (2.15), and substitute (5.2) in (5.1) to derive 
the algebraic system of equations 

,~.2D2P • 2,A2D2P 4rr(5. , ,A2D2P 
--1Jjrn)~ -- ,)~ urjrn) ~ q- - ~  3m = O, tj~t.~jm)~ = O. (5.4) 

When I1ol = 0 the solution is 

•2D2P ~q2D2P _ 47r (5. 
jmO =~0, VjmO - A 3m, 

whereas, when II~[ ~ 0, the solution is 

~2D2P 47r 1 ( l j )~ lm~)  :.2D2p47rlj)Jm)~ 
jm)~ A II;~l 2 (sjm 11;~12 , Vjm~ A II~l 2 " 

Substituting (5.5a,b) in (5.2) we obtain the Green's function in the form 

(5.5a) 

(5.5b) 

G2D2P j m  
47r 1 (6j 

= - Y  m 

= --4rc~( 

lj~Im~ exp(-il ,x.  Xo) 
Ilml 2 ] 

0 ) s2D2P (Ix ' i0) 
O~g j OXm ] 

(5.6) 

where the generating function is given by 

s2D2P(1, X) = exp( - i l  • x) 
[114 (5.7) 
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The associated pressure gradient is given by 

Op 2D2P 47r 47r 

I lx I ~0 
47r 47r 

= --"~Sjm A ~ 
II~l#O 

lj:~Ima exp(-il,~ • :~o) 
II l 2 

V2 s2DZP (I~, Xo). 
OxjOx~ (5.8) 

5.2. SINGLY-PERIODIC ARRAY 

To obtain a singly-periodic array of three-dimensional point forces arranged in the direction 
of the base vector al, we set a2 perpendicular to al,  and write A = aL where a = lal[ is the 
separation of the point forces and L = la21. The reciprocal base vectors are given in the first 
two equations of (2.11). In the limit, as L tends to infinity, Eq. (5.7) yields 

ira =--~- OXj-OXm s2D1P(m)~' x0)' (5.9) 

Im,~ }~o 

where rnx = Ab] are the reciprocal lattice points, A is an integer, and the generating function 
is given by 

1 __f-~oo e x p [ - i ( m  + r / e 2 ) l m  -b r/e2[ 4 .x] d r / =  ~] ~1 +Pexp(- im.x-p) ,  s2DIP(m,x) (5.10) 

where p = Iml e2 • x. ~t is instructive to note that (5.9) and (5.10) may also be obtained by 
integrating the generating function for the double-periodic array of three-dimensional point 
forces (2.13) with respect to the z coordinate of the point sources over one period. 

The corresponding pressure gradient is found by enhancing the first term on the right-hand 
side of (5.8) with a one-dimensional delta function (51 acting in the plane of the one-dimensional 
array, and integrating the last term as in (5.11). The result is 

0 Op2D1P~ -- 27r~jm(~'(:~02)- T27r ~ Ox~xmV2S3v2e(ma,~o). (5.11) 

Imxl#0 

In deriving the singly-periodic from the double-periodic array, we abandon the summation 
over the array corresponding to the null wave number Im l = 0 as shown in (5.9) and (5.11). 
As a result, the flow vanishes at an exponential rate far from the array, and the pressure 
assumes a uniform value. 

One may readily verify that the Laplacian of the generating function given in (5.10) 
represents the steady temperature field due to the combined action of a singly-periodic array of 
two-dimensional point sources of heat situated at the point forces, and a continuous distribution 
of corresponding point sinks situated in the line of the array, so that the net rate of transport 
of heat across a period vanishes. The distributed singularities cause the stress field associated 
with the Green's function to exhibit a singular behaviour at the line of the point forces, which 
is analogous to that of the doubly-periodic array of three-dimensional point force discussed 
in Section 2. 
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When the point forces are oriented normal to the array, in order to obtain a Green's function 
with a continuous stress field we simply enhance the pressure with an appropriate step function. 
When the point forces are tangential to the array, we introduce a symmetric shear flow that 
cancels the discontinuity in shear stress, thus obtaining the regularized form 

G~D1P_ R = G~D1P 27r 15:021" (5.12) 
a 

Fortunately, the regularized Green's function may be computed closed-form solution rendering 
the above derivation a mere academic altemative [1,17]. 

6. Arrays of two-dimensional point forces: fast summation methods 

The slow converge of the partial sums on the right-hand sides of (5.6) and (5.8) renders the 
Fourier expansion uneconomical for numerical computation. Summation in closed form is 
discouraged by the occurrence of Jacobi's theta functions in the double summation of the 
logarithmic kernel [18]. To circumvent these difficulties, we explore alternative formulations 
based on Ewald's and related summation methods. 

6.1. HASIMOTO'S METHOD 

Hasimoto [8] developed a method for computing the generating function (5.7) and its Laplacian 
based on Ewald's original formulation. The final results, given explicitly by van de Vorst [11], 
may be placed in the form 

2D2P 47r ~ ( 
a r. (x, xo) = + - y  --6jr V + - -  

n 

IIM#0 

where 
XjXm 

kOjm(X) = -6jmP(~r) + ~ Q ( ~ r ) .  

0 ) S2D2v_l(l~,~0) ' (6.1) OxjOxm ] 

(6.2) 

r = Ix[, ¢ is a positive parameter, P(x) = - (1 /2)E1 (x 2) +exp(-xZ) ,  and Q(x) = exp(-x2).  
The exponential E1 may be computed efficiently using polynomial or rational approximations 
[ 14, p. 231 ]. As ~ tends to infinity, the first sum in (6.1) makes a vanishing contribution and 
we recover the Green's function in terms of the two-dimensional Fourier series given in (5.7). 
As x tends to vanish, E l (x  2) behaves like -21nx ,  C(x) behaves like lnx, D(x) tends to 
unity, and the corresponding term in the first sum of (6.1) reduces to the two-dimensional 
Stokeslet. 

The generating function S 2D2P- 1 within the second sum in (6.1) is given by 

s2mP-I(I,x) = + l~] 5 exp 

Following the discussion of Section 2 we find that the flow rate across an infinite line that is 
perpendicular to one of the base lattice vectors is equal to zero. 

6.2. SECOND FAST-SUMMATION METHOD 

Another way of deriving the doubly-periodic periodic Green's function is to begin from the 
three-dimensional triply-periodic array discussed in Section 2, require that al and a2 lie in the 



94 C. Pozrikidis 

xy plane, and set a3 = Lez where ez is the unit vector along the z axis and L is an arbitrary 
period. The reciprocal base vectors are given in (2.11) with e3 = ez. Stipulating that both the 
observation point x and the location of the point force Xo lie in the xy plane, we integrate 
(2.26) with respect to z0 over one period of the three-dimensional lattice from z0 = 0 to 
z0 = L, finding 

Ilxl#0 

(--t~jmV2+tgXj~Xm) s2D2P-2(I,~, X0), 

(6.4) 
where the generating function is given by 

1 [ L  S 3D3P-I 
s2D2P-2(l,  X -- X0) = Z So (1, x - Xo) dzo. (6.5) 

Note that the terms on the right-hand side of (6.4) have been multiplied by a factor of one-half 
due to the standard convention in the definition of the two-dimensional Green's function with 
respect to the strength of a two-dimensional point force. 

Substituting the definition of (9 from (3.3) in the first integral on the right-hand side of 
(6.5) we obtain 

,fo O ( x -  x0) dz0 = [E(~, r0)I + ( x -  x 0 ) ( x -  x0)H(~, r0)], (6.6) 

where r0 = Ix - xol, the functions E and H are given by 

) 
E ( ~ , r ) =  ( r 2 + z 2 ) l / 2  dz, H ( ~ , r ) =  (r2+z2)3/2 dz (6.7) 

and the functions C and D are given in (3.4). A formal asymptotic expansion shows that, 
in the limit as r tends to zero, E behaves like - In r whereas H behaves like r -2, in which 
case the right-hand side of (6.6) reduces to the free-space two-dimensional stokeslet [6]. On 
the other hand, as r tends to infinity, the functions C and D, and thus E and H,  decay in a 
Gaussian manner. 

Unfortunately, it appears that neither of the integrals in (6.7) may be evaluated in closed 
form. Fortunately, both integrals may be evaluated by a relatively simple and efficient numer- 
ical method. To compute the function E,  we note that the integrand is singular when r = 0, 
and C(0) = 1, and express it in the form 

E(~ , r )  = [N(,) C ( ~ ~ )  - 1 
Jo (r 2 + z2)1/2 dz + In 

N + 

r 
(6.8) 

where N is a specified truncated limit of integration whose optimal value is adjusted by 
numerical experimentation. The integral in (6.8) is non-singular and may be computed using a 
standard numerical method, such as a Gauss-Legendre quadrature [4]. A similar method may 
be devised for the computation of the function H. Constructing tables of E and H and then 
computing their values by interpolation, in particular, results in a most economical strategy 
of computation [5]. 
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To obtain the generating function S 2D2P-2 we integrate (3.14) over z0 as indicated in 
(6.5), and find that the integral vanishes when k3 ~- 0. Carrying out the integration for k3 = 0 
yields 

1 (~4 1 ~2 ) ( l ~ 2 ~ e x p ( i l . x ) ,  (6.9) s2D2P-E(1, X) : ~'~ ~-~ -t- ~ i ]  ~ + ~ exp ~-Z]]]~j  

which differs from the function S 2D2P- 1 shown in (6.3) only by the presence of the constant 
1/8 within the first set of parentheses on the right-hand side. Substituting (6.9) along with 
(6.6) in (6.4) gives the final form 

G2DEP(x, x0) = ~--~[IE((, I kl) +  kikH(C, I kl)] 
k 
47r 1 ( l ; d ~  

+7 cos[ira. ( x -  x0)]]i  ilml 2 ] 
A 

I IX I #0 

/ ex [  610, 
As expected, the right-hand side of (6.10) is independent of L. As ( tends to infinity, the 
first sum makes a vanishing contribution and we recover the Green's function in terms of a 
two-dimensional Fourier series as in (5.6). Expression (6.1) and (6.10) are equivalent, but the 
former is more expedient for numerical computation. 

7. Summary 

Efficient numerical methods for computing the Green's functions representing the flow due 
to triply- and doubly-periodic arrays of three-dimensional point forces are available. The 
flow due to a singly-periodic array of three-dimensional point forces resits efficient numerical 
computation. The flow due to a doubly-periodic array of two-dimensional point forces can 
be computed efficiently using two alternative fast-summation methods, and that due to a 
singly-periodic array is available in closed form. 
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